UNDER CONSTRUCTION
Code for this chapter
Useful Theorems
theorem not_empty_to_exists {A : Type u} {S : Set A} : S ≠ ∅ → ∃ x, x ∈ S := by
intro h
by_contra h'
simp at h'
exact h (Set.eq_empty_iff_forall_not_mem.mpr h')
theorem not_full_to_not_exists {A : Type u} {S : Set A}
: S ≠ Set.univ → ∃ x, x ∉ S := by
intro h
exact (Set.ne_univ_iff_exists_not_mem S).mp h
theorem not_empty_set_diff {A : Type u} {X Y : Set A} (h : ¬X ⊆ Y)
: X \ Y ≠ ∅ := by
simp[Set.instSDiff,Set.diff]
by_contra hx
simp at hx
exact h hx
theorem remove_set_notation {T : Type*} (A : Set T) (f : T → Prop)
: { x | f x } = A ↔ ∀ x, x ∈ A ↔ f x := by
constructor
. exact fun a x ↦ Iff.symm (Eq.to_iff (congrFun a x))
. exact fun a ↦ Eq.symm (Set.ext a)
Copyright © 2025 Eric Klavins